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Abstract
Characterizing aquifer properties and their associated uncertainty remains a fundamental challenge in hydrogeology. Recent

studies demonstrate the use of oscillatory flow interference testing to characterize effective aquifer flow properties. These
characterization efforts relate the relative amplitude and phase of an observation signal with a single frequency component
to aquifer diffusivity and transmissivity. Here, we present a generalized workflow that relates extracted Fourier coefficients for
observation signals with single and multiple frequency components to aquifer flow properties and their associated uncertainty.
Through synthetic analytical modeling we show that multi-frequency oscillatory flow interference testing adds information that
improves inversion performance and decreases parameter uncertainty. We show increased observation signal length, sampling
frequency, and pressure sensor accuracy all produce decreased parameter uncertainty. This work represents the first attempt we
are aware of to quantify effective aquifer parameters and their associated uncertainty using multi-frequency oscillatory flow
interference testing.

Introduction
Characterizing the physical properties governing flow

and transport, specifically transmissivity and storativity,
in aquifers remains a fundamental challenge and active
area of research in hydrogeology. This critical first step in
all groundwater investigations has significant implications
for groundwater resource management and contaminant
remediation strategies. As such, there is a large body
of literature exploring best practices for quantifying
subsurface flow properties that can be largely grouped
into four categories: (1) geophysical, (2) tracer, (3) core
analysis, and (4) hydraulic. Cardiff et al. (2012) provide
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a thorough review of the various approaches within each
category.

In this work, we focus on hydraulic characterization
approaches, where aquifer flow properties are inferred by
measuring pressure responses at discrete points throughout
the aquifer in response to a natural or anthropogenic-
induced pressure stimulus. The constant-rate pumping test
and slug test, two common hydraulic characterization
techniques, sample the aquifer at different scales, and
thus estimate aquifer flow parameters which may differ by
orders of magnitude depending on the level of heterogene-
ity present in the aquifer—the well-known “scale effect”
(e.g., Bradbury and Muldoon 1990; Neuman 1990, 1994;
Rayne 1994; Rovey and Cherkauer 1995; Sánchez-Vila
et al. 1996; Schulze-Makuch et al. 1999). In this work, we
discuss oscillatory flow interference testing, a hydraulic
characterization approach capable of sampling an aquifer
across a range of scales by changing the frequency of the
introduced pressure perturbation (Cardiff et al. 2013).

The first attempt at leveraging oscillatory signals to
characterize aquifer properties utilized diurnal river fluctu-
ations to quantify the transmissivity of an alluvial aquifer
(Ferris 1952). The first known use of non-natural peri-
odic pressure signals proposed harmonic pulse testing
to characterize petroleum reservoir permeability without
interrupting production operations (Johnson et al. 1966),
with the first field implementation occurring shortly there-
after (Kuo 1972). Following this, Black and Kipp (1981)
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developed the first analytical solutions to describe the
expected steady-periodic response to oscillatory pres-
sure stimulations from point and line sources in con-
fined aquifer systems and investigated the distances across
which measurable signals could be propagated. Building
on this work, Rasmussen et al. (2003) developed ana-
lytical solutions for confined and leaky aquifer systems
as well as aquifers with partially penetrating wells. This
study presented formulas for separating hydraulic diffusiv-
ity into its component parts, transmissivity and storativity,
by using oscillatory pressure data.

Oscillatory flow interference testing has many advan-
tages over conventional hydraulic characterization tech-
niques that are well documented in the literature (Fokker
and Verga 2011; Cardiff et al. 2013; Bakhos et al. 2014;
Guiltinan and Becker 2015; Rabinovich et al. 2015). For
example, oscillatory flow interference testing samples an
aquifer at multiple scales simply by varying the frequency
of the pressure stimulation. Additionally, by alternating
withdrawal and injection, oscillatory flow interference
testing yields a net zero drawdown meaning that alter-
ations to the flow field are negligible and follow-on testing
can occur with minimal to no time waiting for aquifer
recovery. While similar scaling could be achieved by
changing the inter-well spacing or varying the time of
a constant-rate pumping test, and thus the radius of influ-
ence, the aquifer must be allowed to recover to steady-
state prior to follow-on testing, increasing the total time
required for the characterization efforts.

In addition to the advantages presented above,
oscillatory flow interference testing also benefits from the
ability to extract the input signal from a noisy observation
signal. In practice, data collected during aquifer charac-
terization efforts can contain one or multiple sources of
noise that obscure the signal such as: random instrument
measurement error (i.e., white noise), linear trends
associated with instrument drift, hydrologic noise such as
periodic signals induced by earth tides or evapotranspira-
tion, and discontinuities in the data (Bakhos et al. 2014).
The interested reader is directed to Bakhos et al. (2014)
for illustration of the various types of data noise. Using
established signal processing techniques, attenuated and
delayed stimulation signals recorded at an observation
well are readily extracted from the noise and used to
quantify aquifer flow parameters (Bakhos et al. 2014).

Despite the multiple advantages of oscillatory flow
interference tests, their use in field settings remains lim-
ited. Field studies employing oscillatory flow interference
testing described in the literature use multiple approaches
to generate the pressure stimulation. One approach uses
a pump in a water storage tank at the surface and another
in the borehole to alternate pumping and injection flow
rates in a periodic manner, creating a square signal
centered around either a flow rate of zero or a constant
background pumping rate (Rasmussen et al. 2003; Renner
and Messar 2006; Salina Borello et al. 2019). Using
this approach, the amplitude of the observation signal
is controlled by the chosen pumping and injection flow
rates. As an alternative to variable pumping rates, other

studies have used oscillatory slug testing, where an
electric motor raises and lowers a solid slug throughout
the borehole to generate the periodic pressure stimulation,
where the size of the solid slug moved through the water
column controls the peak flow rates and resulting obser-
vation signal amplitudes (Becker and Guiltinan 2010;
Guiltinan and Becker 2015). Similarly, Cardiff et al.
(2020) used a surface motor connected to a down-hole
piston to generate oscillatory flow in a screened interval
between two packers. Last, Sayler et al. (2018) used
a well-head pneumatic system to pressurize and de-
pressurize the water column in a periodic manner. This
approach produces the same effect of alternately injecting
and pumping water from the aquifer without the need for
additional pumps and water storage at the land surface,
reducing water and equipment treatment requirements
when testing contaminated aquifers.

The above-mentioned studies propose different
approaches to quantify aquifer flow parameters using
observation signals collected through oscillatory flow
interference testing. Multiple studies used only borehole
pressure measurements at stimulation and observation
wells to estimate aquifer diffusivity by analyzing the
amplitude ratio and phase ratio between the stimulation
and observation wells (Black and Kipp 1981; Renner
and Messar 2006; Becker and Guiltinan 2010; Sayler
et al. 2018). Using this approach, the diffusivity cannot
be separated into its component parts, transmissivity
and storativity, due to the lack of flow-rate information
from the pumping well, which provides the necessary
additional constraint to quantify transmissivity (Black
and Kipp 1981; Renner and Messar 2006). Leveraging
flow rate and pressure data collected through oscillatory
flow interference testing at the Savannah River Site,
Rasmussen et al. (2003) developed approximate expres-
sions relating relative amplitude ratio and phase delay to
estimate aquifer diffusivity and transmissivity (Figure 1).
Using the same approach, Guiltinan and Becker (2015)
identified inter-well connectivity and quantified the flow
properties of a fractured sedimentary bedrock aquifer.
This inversion algorithm provides a straightforward
approach to estimate aquifer flow parameters using
oscillatory flow testing; however, in the event of phase
wrapping when the phase offset between stimulation
and observation signals exceeds 2π —this approach can
return parameter estimates that are wrong by orders of
magnitude (Cardiff and Sayler 2016).

As the studies above illustrate, aquifer characteriza-
tion using oscillatory flow interference testing leverages
collected stimulation and observation signals with estab-
lished analytical models to quantify effective aquifer flow
parameters, often in a deterministic manner. While uncer-
tainty quantification is well-established and frequently
applied in the context of hydraulic and geophysical aquifer
characterization (e.g., Linde et al. 2017), quantifying the
uncertainty of estimated aquifer flow parameters under
oscillatory flow conditions remains unexplored. Given that
these flow properties provide inputs for predictive mod-
eling simulations, understanding the uncertainty in these
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Figure 1. The stimulation signal (blue) represents the head measured at the stimulation well. The observation signal (orange),
representing head measured at the observation well, is attenuated and offset relative to the stimulation signal. The relative
amplitude and phase offset provide constraints to estimate aquifer diffusivity.

parameter estimates is critical for groundwater resource
management and contaminant remediation strategies. Sim-
ilarly, the effect of using multiple frequencies on reducing
parameter uncertainty under oscillatory flow conditions
remains an unexplored area in the literature. This points
to a clear need for the development of a generalized inver-
sion strategy that estimates aquifer flow parameters and
quantifies the associated uncertainty using single and mul-
tiple frequency oscillatory flow interference testing.

In this work we build on established analytical solu-
tions to develop a generalized gradient-based inversion
workflow that improves on previous approaches in three
ways. First, our approach provides an alternative analy-
sis framework for oscillatory signals that simplifies data
analysis and error propagation by working directly with
extracted Fourier coefficients instead of the amplitude
ratio and phase offset seen in previous works (Rasmussen
et al. 2003; Renner and Messar 2006; Becker and Guilti-
nan 2010). Second, our approach allows for simultane-
ous inversion of multiple frequencies when quantifying
effective flow properties. Last, the presented workflow
directly relates data error to associated parameter uncer-
tainty through linearized error propagation.

Mathematical Approach
In this section we present our mathematical approach

through a workflow that estimates aquifer flow parameter
estimates under uncertainty. For consistency and clarity,
we employ the following terminology throughout the
remainder of this manuscript. “Observation signal” refers
to the timeseries of pressure measurements and associated
noise collected at an observation well, “data” refers to the
Fourier coefficients extracted through signal processing,
“error” refers to the error associated with the extracted
Fourier coefficient estimates resulting from observation
signal noise, and “uncertainty” refers to the uncertainty in
estimated aquifer flow parameters. The primary steps in
our workflow are briefly described:

1. Signal processing: Using a least-squares approach, we
directly relate the measured noisy observation signal
to the extracted Fourier coefficients and the associated
data error.

2. Optimization under uncertainty: Extracted Fourier
coefficients are provided as data for a gradient-based
Bayesian inversion providing optimal aquifer flow
parameters as outputs.

3. Uncertainty quantification: Optimal aquifer flow
parameters and data error are used to quantify
parameter uncertainty through linearized error
propagation—from observation signal noise, to data
error, to aquifer parameter uncertainty.

Signal Processing
Here, we discuss our signal processing strategy to

remove observation signal noise and extract the Fourier
coefficients using an ordinary least squares approach
as discussed by Bakhos et al. (2014). For the purposes
of this analysis, we assume the signal has achieved a
steady-periodic state. That is, the observation signal can
be defined with a constant amplitude and phase and any
initial transient effects associated with the onset of testing
can be neglected. Further, we assume that the period of
the stimulation signal is exactly known. If the stimulation
period is not precisely known, application of a discrete
Fourier transform to the observation signal can be used to
extract the dominant period of the signal, allowing direct
application of the following signal processing workflow
(Bakhos et al. 2014).

As an illustrative example, consider a time series
of head measurements at a specified distance (d) from
the stimulation well, given by a linear combination of
sinusoids and observational noise:

h(d, t) = �r cos(ωt) − �i sin(ωt) + ε(t) (1)

where ω is the angular frequency in radians—which can
be represented as ω = 2π/P where P is the stimulation
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period—�r and �i are the real and imaginary Fourier
coefficients, respectively, and ε is the observation noise.
Given this observation signal, we can write Equation
(1) as a matrix system of equations where the Fourier
coefficients are the only unknown (Equation 2).

h = XΦ + ε, X =

⎡
⎢⎣

cos(ωt1) sin(ωt1)
...

...

cos(ωtn) sin(ωtn)

⎤
⎥⎦ , Φ =

[
�r

�i

]

(2)
For the purposes of this example, we determine the
Fourier coefficients for an observation signal with one
frequency component; however, this analysis is easily
extended to observation signals with multiple frequency
components by expanding X and Φ to include the addi-
tional sinusoidal terms and Fourier coefficients (Bakhos
et al. 2014).

Taking a least-squares approach, the Fourier coeffi-
cients and their associated error are estimated as:

Φ̂ = (XT X)−1Xh (3)

R = σ 2(XT X)−1 (4)

The misfit between the modeled signal using the optimal
Fourier coefficients (XΦ̂) and the observation signal
(h), provides an estimate of the variance (σ 2) of the
observation signal noise (ε). Last, we use linear theory
to quantify the data error (i.e., covariance matrix [R])
assuming ε ∼ N (0, σ 2), following Bakhos et al. (2014).

Given a forward model that takes aquifer flow
parameters as inputs and generates Fourier coefficients as
outputs, we can create a gradient inversion algorithm that
estimates the aquifer flow parameters that most closely
match the data using the analysis approach described
above. Further, using linearized error propagation we
can quantify the uncertainty in these parameter estimates,
and assess the quality of our linearization by contouring
model misfits across a reasonably wide range of parameter
values.

The presented approach is equivalent to optimizing
a given forward model to the amplitude and phase of
a signal; however, optimizing the forward model to the
extracted Fourier coefficients has multiple benefits. First,
optimizing over the Fourier coefficients minimizes issues
with phase nonuniqueness due to phase wrapping (Bakhos
et al. 2014). Also, the forward and inverse relations
between an observation signal and the extracted Fourier
coefficients are linear in nature, allowing direct application
of linear theory to reconstruct a noise-free signal, quantify
data error, and quantify uncertainty in estimated flow
parameters through linearized error propagation.

Optimization Under Uncertainty
As discussed above, Rasmussen et al. (2003) provide

a set of approximate analytical solutions to estimate
aquifer flow properties using the relative amplitude and
phase offset of the observation signal with respect to the

stimulation signal. Here, we present a gradient inversion
under a Bayesian framework that relies on Fourier
coefficients as forward model outputs to estimate the
optimal aquifer flow properties.

To determine the optimal aquifer flow parameters,
we minimize the following objective function, which is
equivalent to maximizing the likelihood of aquifer flow
parameters given the available data (Aster et al. 2018):

min
s

1

2
(Φ − h(s))TR−1(Φ − h(s)) (5)

where Φ =
[
�r

�i

]
are the extracted Fourier coefficients,

h(s) is the forward model that takes aquifer flow
parameters (s) as inputs and outputs Fourier coefficients,
R is the n × n data error covariance matrix, and n is
the number of data points (i.e., the number of extracted
Fourier coefficients). For the case of multi-frequency
inversion, R is a block-diagonal matrix where the diagonal
is populated by the covariance matrix for each frequency
component. To conduct this inversion, we apply the
Levenberg–Marquardt algorithm, where we determine the
gradient at each iteration by numerically approximating
the Jacobian matrix with the updated parameters (Aster
et al. 2018).

For the purposes of our analysis, we assume an
uninformative prior during inversion, that is we assign
equal probabilities to all possible parameter values. Our
inversion returns the maximum of the posterior distri-
bution, and because we assume the flow parameters are
log-normally distributed, the maximum a posteriori prob-
ability is identical to the mean value of the posterior
distribution (Aster et al. 2018). Also, we assume observa-
tion noise is unbiased with independent Gaussian errors.
We impose a nonnegativity constraint on the estimated
parameters by working with log-transformed parameters.
We declare convergence when the relative change in
objective function and relative change in parameter val-
ues between consecutive iterations is less than or equal
to 1e-6.

Uncertainty Quantification
Finally, we discuss uncertainty quantification, the last

step in our developed workflow. Following inversion, we
use the determined optimal flow parameters as inputs to
quantify parameter uncertainty through linearized error
propagation. First, we numerically approximate the m × m

Jacobian matrix (i.e., parameter sensitivity matrix) by
making small perturbations to the optimal parameters,
where m is the number of optimal aquifer flow parameters
quantified. Next, we use the Jacobian to calculate the
parameter covariance matrix given by:

Cov(s∗) = (J(s∗)TR−1J(s∗))−1 (6)

where J is the Jacobian matrix at the optimal parameters,
and s∗ is the vector of optimal aquifer flow parameters
(Aster et al. 2018). The diagonal elements of the parameter
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covariance matrix represent the posterior variance of the
estimated aquifer flow parameters. Finally, we use the χ2

distribution with m degrees of freedom to draw the bounds
of the 95% confidence ellipse rotated and scaled by the
eigenvalues and eigenvectors of the parameter covariance
matrix, following Aster et al. (2018).

Synthetic Modeling Examples
Considering the practitioner with a finite amount of

time to complete field experiments, here we present a
practical synthetic application of the aquifer characteriza-
tion workflow described above. In this work, we assume
that each oscillatory flow interference test is conducted
independently when signals of multiple frequencies are
analyzed; therefore, the total test time is the sum of
each individual test time. As an example, for the multi-
frequency case with stimulation periods of 30 s, 90 s, and
180 s we consider oscillatory flow tests that run for a total
of 12 periods, yielding a 6-min test at 30 s period, 18-min
test at 90 s period, and 36-min test at 180 s period for total
testing time of 60 min. Using this approach, we investigate
a range of total test times to understand how the number
of full periods (i.e., signal length) in the observation sig-
nal used during analysis affects aquifer flow parameter
uncertainty.

We start with a base case scenario using input param-
eters representative of a field-scale characterization effort
in a confined—and possibly leaky—sedimentary bedrock
aquifer (Table 1). We selected instrument error and sam-
pling frequency to be consistent with the capabilities of
equipment commonly employed in industrial and aca-
demic settings. Next, we conduct a brief sensitivity analy-
sis to understand how improvement in observation signal
recording and choices made during experimental design
affects parameter uncertainty. Specifically, we explore
how changes in inter-well spacing, sampling frequency,
observation signal noise, and total test time impact the
uncertainty of the estimated aquifer flow parameters. This
analysis improves the current understanding of oscillatory
flow interference testing and supports decision-making
during field experiment planning so that aquifer charac-
terization efforts can be pursued in the most cost-effective
and time-efficient manner while minimizing parameter
uncertainty.

Synthetic Data
To more closely match field conditions, we gen-

erate noisy synthetic data in a series of three steps.
First, we generate the noise-free signal (Equation 1)
using the Fourier coefficients determined by apply-
ing the base case input parameters (Table 1) to the
appropriate forward model. Next, we add random noise
to the true signal, assuming independent and identi-
cally distributed Gaussian noise with zero mean and
0.01 m standard deviation (σ ). This signal represents
the raw time series that would be collected at sur-
rounding observation wells during oscillatory flow inter-
ference testing. Finally, we employ the least-squares

Table 1
Base Case Modeling Input Parameters for the
Fully Confined and Leaky Confined Aquifer

Conceptual Models

Parameter Value Units

Radial distance (r) 10 m
Diffusivity (log): ln(D) 2 ln(m2/s)
Transmissivity (log): ln(T ) −8 ln(m2/s)
Leakance (log): ln(L) (Leaky case only) −21 ln(s−1)

Assumed observation signal noise (σ ) 0.01 m
Sampling frequency 8 Hz

Note: The base case scenario includes three single frequency and three multi-
frequency stimulation signals.

approach described in the signal processing workflow
to extract the Fourier coefficients from the observation
signal and compute the associated data error covariance
matrix.

Confined Aquifer System
First, we apply our workflow to a fully confined syn-

thetic aquifer system using the analytical model described
given by equation 6 in Rasmussen et al. (2003), which
outputs Fourier coefficients for a given set of aquifer flow
parameters. The assumptions of the analytical model are
identical to those of the Theis solution, with the constant
pumping rate being modified to a sinusoidal pumping
rate. Specifically, we assume the aquifer is fully confined
with a constant saturated thickness across an infinite areal
extent. Further, we assume that the aquifer is at steady-
state prior to testing with no head change at infinite
distance, and the well is fully penetrating creating purely
radial flow. Finally, we assume the aquifer flow properties
are homogeneous and isotropic (Theis 1935). Under this
conceptual model, we use the generated synthetic data to
invert for transmissivity (T ) and storativity (S), which
then allows diffusivity to be determined. Recognizing
that practitioners have finite time to available for testing,
we employ stimulation periods of 30 s, 90 s, and 180 s.
This represents the shortest practical stimulation periods
that generate measurable signals at observation wells
while testing the aquifer at multiple scales.

Figure 2 shows parameter uncertainty results across a
range of scenarios. Through linearized error propagation,
we find that uncertainty in estimated transmissivity is
consistently greater than storativity, with the exception
of the shortest stimulation period under single frequency
inversion (Figure 2). Further, our results indicate that
uncertainty in estimated storativity remains approximately
equal at all but the shortest stimulation period for a
given total test time, including multi-frequency inversion
(Figure 2). In contrast, our analysis shows that uncertainty
in estimated transmissivity decreases with increasing
stimulation period when conducting single frequency
inversions, while the uncertainty associated with multi-
frequency inversions are approximately equivalent for a
given signal length (Figure 2).
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covariance matrix (Equation 6)—as a function of signal length across all single frequency and multi-frequency inversions
analyses.
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and 180 s. Yellow squares represent increased inter-well spacing, green triangles represent increased sampling frequency,
and purple diamonds represent decreased observation signal noise. Increasing distance increases uncertainty while increased
sampling frequency has the largest impact on uncertainty reduction.

To understand the impact of experimental design and
equipment capabilities on the uncertainty of estimated
aquifer flow parameters, we explore how observation
signal length (i.e., total test time), inter-well spacing,
observation signal sampling frequency, and observation
signal noise changes parameter uncertainty compared
to the multi-frequency baseline scenario with 30 s, 90 s,
and 180 s stimulation periods. Analogous to results
presented by Bakhos et al. (2014), we find that uncer-
tainty in estimated transmissivity and storativity decrease
approximately exponentially with increased signal length
(Figure 2). Further, our sensitivity analysis indicates that
increasing the sampling frequency produces the largest
decrease in parameter uncertainty under oscillatory flow
conditions (Figure 3). In contrast, we observe an increase
in parameter uncertainty at inter-well spacing (Figure 3),
a trend that holds across all explored stimulation
periods (Figure S1). Specifically, we note a one order

of magnitude increase in parameter uncertainty with
a 20-m inter-well spacing and 30-s stimulation period
(Figure S1)—this scenario represents the case where
the inter-well spacing exceeds the maximum propagation
distance for signals of this frequency. However, comple-
menting the 30-s stimulation period with an intermediate
or long stimulation period signal in a multi-frequency
inversion produces lower parameter uncertainty than
any of the single frequency inversions with increased
inter-well spacing at a 30-s stimulation period (Figure S1).

Further exploring the advantages of multi-frequency
inversion during aquifer characterization, we contour the
log-transformed model misfit relative to the base case
true model, across a wide range of reasonable parameter
values. Single frequency analysis shows a well-defined
global minimum associated with the true parameters that
elongates along the storativity axis and contracts along
the transmissivity axis with increasing stimulation period
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Figure 4. Model misfit contours (top row) with zoomed in view at global optimum (bottom row) showing optimal and true
parameters within 95% confidence ellipse for single frequency inversions at stimulation periods of 30 s (left), 90 s (center),
and 180 s (right). Parameter uncertainty decreases with increasing stimulation period using single frequency inversion.

Table 2
Optimal Parameters and Objective Function

Values (Equation 5) for All Stimulation Periods at
the Global and Local Minima

Period (s) ln(Topt) ln(Sopt)

Global
minimum

log10
(misfit) ln(Topt) ln(Sopt)

Local
minimum

log10
(misfit)

30 −8.0 −9.9 −0.42 −15.1 −13.5 −0.42
90 −7.9 −10.0 −0.06 −15.3 −12.7 −0.06
180 −7.9 −10.0 0.28 −15.4 −12.1 0.28
30 and 90 −8.0 −9.9 −0.82 −15.3 −12.7 2.44
30 and 180 −7.9 −10.0 −0.32 −15.4 −12.1 2.40
30, 90, and 180 −8.0 −9.9 −0.49 −15.4 −12.1 3.62

(Figure 4). We see that our inversion converges at the
global minimum with the true model parameters lying
inside the 95% confidence ellipse (Figure 4). Further,
our single frequency analysis reveals a well-defined
local minimum at decreased transmissivity and storativity
values associated with the first phase wrap (Figure 4).
We note that the local minimum decreases in size along
the transmissivity axis and shifts to higher storativity
values with increasing stimulation period (Figure 4).
Under single frequency analysis, model misfits at the local
minimum are equivalent to misfits at the global minimum
(Table 2), motivating the use of multiple frequencies
during analysis.

Similar to the single frequency analysis, our multi-
frequency analysis again shows a well-defined global opti-
mum centered at the true aquifer parameters that elongates
along the storativity axis relative to the lowest frequency

component used during inversion (Figure 5). Utilizing a
multi-frequency observation signal, we note that the inver-
sion converges to more accurate optimal parameters and
a 95% confidence ellipse that is reduced in size relative
to the single frequency inversions (Figure 5). The local
minimum seen in the single frequency analysis persists
under multi-frequency analysis with notable differences.
First, the location of the local minimum does not shift
throughout the parameter space with different permuta-
tions of frequency components (Figure 5). Next, we note
a significant decrease in the size of the local minimum
compared with the single frequency analysis (Figure 5).
Last, there are fewer misfit contours defining the local
minimum and the misfit value of the contours are larger
compared to our single frequency analysis (Figure 5). To
illustrate this point, we strategically change the initial
parameters for inversion, which directs convergence to
the local minimum, and we evaluate the objective function
at these optimal parameters. This analysis shows greater
than two orders of magnitude difference in misfit using
multi-frequency analysis compared to the single frequency
analysis (Table 2).

Leaky Aquifer System
We now apply our workflow to a synthetic leaky con-

fined aquifer system using the analytical model described
given by equation 14 in Rasmussen et al. (2003), which
outputs Fourier coefficients for a given set of aquifer flow
parameters. Under this conceptual framework, we invoke
the same assumptions used for the fully confined concep-
tual model. Further, we assume the aquifer is bounded
by an aquitard on both sides with a source of water on
the opposite side of one aquitard. The leaky aquitard is
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Figure 5. Model misfit contours (top row) with zoomed in view at global optimum (bottom row) showing optimal and true
parameters within 95% confidence ellipse for multi-frequency inversion analyses at stimulation periods of 30 s and 90 s (left),
30 s and 180 s (center), and 30 s, 90 s, and 180 s (right). The 95% confidence ellipse is smaller for all multi-frequency analyses
as compared to their respective single frequency results.

assumed to be incompressible with no horizontal flow
component (Hantush and Jacob 1955). Under this con-
ceptual model, we estimate transmissivity, storativity, and
aquitard leakance (L). Due to the large contrast in aquifer
transmissivity and aquitard leakance, longer stimulation
periods are required to generate the vertical gradients
necessary to induce vertical flow through the confining
unit; therefore, we increased the stimulation periods to
3600 s, 5400 s, and 7200 s under this conceptual model.

Using single frequency oscillatory flow interference
testing to characterize the flow properties of the leaky
aquifer system creates an ill-posed parameter estimation
problem with more unknown parameters than data.
Linear inverse theory suggests that our inversion will
be nonunique with multiple sets of parameters fitting
the data equally well, and using an uninformed prior
we have no extra information to help constrain (i.e.,
regularize) the inversion within an expected range of
parameter values (Aster et al. 2018). Using a grid search
across a reasonably wide parameter space, we identify
the range of parameters that yield a data misfit ≤5e-4
(Figure 6). Using the type-curve analysis presented in
Rasmussen et al. (2003) as a framework, we see that
if we know or make a reasonable guess at the aquitard
leakance, we can identify the aquifer flow parameters
with a nonlinear trade-off between transmissivity and
storativity (Figure 6). Further, we observe multiple levels
of parameter nonuniqueness with nonlinear relationships
between transmissivity and leakance as well as storativity
and leakance (Figure 6). These results motivate the
use of multiple frequency components as additional

constraints during inversion under the leaky conceptual
model.

The single frequency analysis discussed above indi-
cates that multi-frequency inversion is necessary to accu-
rately and uniquely identify aquifer flow parameters of
a leaky confined aquifer. Using multiple frequency com-
ponents, our inversion converges to optimal aquifer flow
parameters with a 95% confidence ellipsoid that encom-
passes the true model parameters (Figure 7). Consistent
with the confined analysis, we note the size of the 95%
confidence ellipsoid decreases with increasing stimulation
period in the multi-frequency analysis (Figure 7). Com-
pared to our uncertainty analysis using a fully confined
conceptual model (Figure 2), we observe that uncertainty
in diffusivity and transmissivity increases under the leaky
conceptual model (Figure 8).

Similar to the fully confined modeling discussed
above, we conduct sensitivity analysis to explore the
effect of observation signal length, inter-well spacing,
sampling frequency, and observation signal noise on
parameter uncertainty under a leaky conceptual model.
Using an observation signal with stimulation periods of
3600 s, 5400 s, and 7200 s for the sensitivity analysis,
we find that increased sampling frequency produces
the greatest decrease in parameter uncertainty, while
increased inter-well spacing leads to an increase in
parameter uncertainty (Figure 9), consistent with our
fully confined analysis (Figure 3). Consistent with our
confined analysis and Bakhos et al. (2014), our results
show decreasing uncertainty with increasing signal length
(Figure 9).
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Figure 6. The range of parameters that fit the extracted Fourier coefficients equally well for an observation signal with
one frequency component. Gray circles represent two-dimensional projections onto the respective plane and green diamonds
represent the three-dimensional parameter vectors.

Figure 7. Parameter 95% confidence ellipsoid from multi-frequency inversion with 3600 s and 5400 s stimulation periods (left)
and 3600 s and 7200 s stimulation periods (right). Reduced ellipsoid size illustrates the effect of low-frequency components on
uncertainty reduction.
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Figure 8. Transmissivity (left), storativity (center), and leakance (right) uncertainty using multi-frequency inversion, showing
significant improvement relative to single frequency analysis. Note the change in vertical scale with leakance uncertainty
(right).
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Figure 9. Transmissivity (left), storativity (center), and leakance (right) uncertainty sensitivity analysis with stimulation
periods of 3600 s, 5400 s, and 7200 s. Yellow squares represent increased inter-well spacing, green triangles represent
increased sampling frequency, and purple diamonds represent decreased observation signal noise. Increasing distance increases
uncertainty while increased sampling frequency has the greatest impact on uncertainty reduction. Note the change in vertical
scale with leakance uncertainty.

Discussion and Conclusions

This work presents a generalized aquifer character-
ization workflow that uses oscillatory flow interference
testing to estimate aquifer flow properties and their asso-
ciated uncertainties. The presented analytical modeling
studies are designed to represent an average aquifer char-
acterization effort at the field scale with aquifer parameters
that are characteristic of confined sedimentary bedrock
aquifers. The presented workflow is easily adaptable to
numerical and field aquifer characterization studies across
a range of scales and lithologies.

This work demonstrates the first effort to estimate
aquifer flow parameters in a leaky aquifer system using
single- and multi-frequency oscillatory flow interference
testing. Previous efforts utilized type-curve analysis to
determine if measured pressure responses were consistent
with the predicted pressure response of a leaky aquifer
at a given leakance value (Rasmussen et al. 2003). Our
analysis shows that while a single-frequency oscillatory
flow interference test is not able to uniquely identify all
parameters, multi-frequency oscillatory flow interference
testing provides additional information that allows
estimation of aquifer flow parameters and aquitard
leakance. This finding further supports the assertion that
employing multiple frequencies during oscillatory flow
testing provides additional information about aquifer flow
parameters (Cardiff et al. 2013). Adapting our workflow
to a leaky confined model is beneficial not only to
aquifers assumed to have leaky confining layers, but also
fractured bedrock aquifers where the surrounding porous
media has sufficient primary porosity and hydraulic
conductivity to promote fluid exchange along pressure
gradients between the fracture and porous media.

Aquifer characterization through oscillatory flow
interference testing does present new issues that should
be considered during inversion. First, the large area of
parameter space with no observable gradient represents
the range of parameters where the observation signal
is indistinguishable from observation noise due to

attenuation (Figures 4 and 5). Inversion iterations or
initial parameter guesses located in this region of the
parameter space make no progress and ultimately con-
verge to inaccurate optimal parameters with unreasonably
large uncertainties, due to the lack of gradient. Further,
phase wrapping is a concern during oscillatory flow
testing analysis that can lead to inaccurate parameter
estimates (Cardiff and Sayler 2016), which manifests as
a local minimum in the parameter space (Figures 4 and
5). Our findings show that the use of multi-frequency
flow testing reduces the size of this local minimum and
produces significantly greater data misfit (Table 2), further
demonstrating the additional information provided when
multiple testing frequencies are employed. Additionally,
based on our visualizations of the parameter misfit space
we employ a simple strategy of providing initial param-
eter guesses of higher than expected transmissivity and
lower than expected storativity to improve inversion per-
formance. Employing these approaches, we consistently
achieve optimal parameter estimates within uncertainty
bounds of the true aquifer parameters (Figures 4 and 5).

The characteristic length, or penetration depth
(dp) under oscillatory flow conditions, of diffusion
processes scales according to dp ∝ √

DP (Turcotte and
Schubert 2002; Renner and Messar 2006; Becker and
Guiltinan 2010). The significant increase in parameter
uncertainty seen in our confined sensitivity analysis at
a stimulation period of 30 s, illustrates the effect of
inter-well spacings that exceed the penetration depth
of an oscillatory flow test (Figure S1). Though a small
pressure signal propagates beyond the penetration depth,
instrument capabilities dictate the identifiability of the
signal within the noise (Renner and Messar 2006). These
results highlight the care needed during the planning
stages of aquifer characterization efforts to ensure readily
identifiable signals are measurable at observation wells.
In light of this, we advocate the use of simple initial
modeling tools (e.g., Cardiff and Barrash 2015) during
test design to ensure the selection of proper stimulation
periods and pumping magnitudes.
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Modeling simulations that output prediction uncer-
tainty are critically important for decision-making related
to groundwater resource management and contaminant
remediation strategies (Linde et al. 2017). These predic-
tive modeling simulations rely on uncertainty in parameter
inputs, providing the motivation to conduct aquifer char-
acterization studies that yield parameter estimates with
the smallest possible uncertainty. Our sensitivity anal-
ysis shows that, under oscillatory flow testing condi-
tions, increasing the sampling frequency yields the largest
decrease in parameter uncertainty. The increased sam-
pling frequency allows us to more accurately determine
when the peak of a specific wave passes the observa-
tion well, thereby decreasing data uncertainty and thus
parameter uncertainty. Although decreasing the variance
of the observation signal noise decreases parameter uncer-
tainty, sensors capable of high-resolution pressure mea-
surements (e.g., fiber-optic pressure sensors with mil-
limeter scale measurement error) are not widespread and
remain expensive.

The presented multi-frequency analysis represents an
area of promising future research, motivating the devel-
opment of multi-frequency oscillatory flow interference
testing with stacked stimulation periods. In our work,
we assume that each frequency represents an individ-
ual oscillatory flow test; however, theoretically it would
be possible to use multiple stimulation signals, each at
different frequencies, to generate a single observation sig-
nal at surrounding wells to estimate aquifer flow proper-
ties and quantify their uncertainty. Under specified time
constraints, this would allow longer signals to be col-
lected thereby further reducing parameter uncertainty as
seen through previous studies and this work (Bakhos
et al. 2014). That said, stacking of multi-frequency sig-
nals is likely to increase the error associated with the
Fourier coefficients for each individual frequency compo-
nent. To date, the use of stacked stimulation periods for
oscillatory flow testing has not been explored in numeri-
cal or field studies and remains a promising direction for
building on this work. Modern pressure stimulation tech-
niques, such as computer-controlled air pressure valves,
may make signal stacking more accessible than prior stim-
ulation approaches, making this a promising area of future
research.
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